Показать сообщение отдельно
Старый 20.05.2010, 15:33   #33
Новичок

 
Регистрация: 04.03.2010
Адрес: Дубна
Сообщений: 18
Пол:
Вы сказали Спасибо: 6
Поблагодарили 1 раз в 1 сообщении
По умолчанию

Там же:

2.5.3. Низкоскоростные струи.Регулярные структуры

При очень низких числах Рейнольдса течение в струе ламинарное, и струя не генерирует звук. Однако при увеличении числа Рейнольдса струя становится неустойчивой по отношению к малым возмущениям, и возникает нестационарный периодический по-
поток.
Плоские струи; краевые тона.
Сначала рассмотрим струю, истекающую со скоростью Uj из длинной щели высотой h в неограниченную покоящуюся среду. Когда число Рейнольдса QoUjh/ц становится большим 100, поток становится неустойчивым по отношению к возмущениям в определенном диапазоне частот и начинает колебаться, принимая синусоидальную форму. Такого рода нестационарность приводит к генерации шума типа шипенья, максимум
спектра которого наблюдается вблизи частоты f = 0,055Uj/h.Такой звук можно преобразовать в звук чистого тона существенно большей интенсивности, который называется «краевым тоном»,если поместить на некотором расстоянии от щели клин, как -
показано на рис. 2.25. Эти тона, имеющие место при генерации звука во флейте или органных трубах, достаточно полно исследованы как теоретически, так и экспериментально. Экспериментальные исследования показывают, что колебания струи связаны с дискретными вихревыми образованиями, которые попеременно срываются с верхней и нижней части вершины клина, как показано на рис. 2.26. Обычно полагают, что генерация этих тонов относится к механизму обратной связи, который очень похож на механизм, имеющий место в случае генерации свиста в струе (см. с. 108 ). Однако в этом
случае излучение акустических волн появляется в результате распространения вниз по потоку возмущений, набегающих на клин. Как и в случае генерации свиста в струе, падение акустической волны на кромку сопла порождает новое возмущение, которое продолжает цикл.
Более того, процесс и в этом случае остается незатухающим вследствие того, что неустойчивость потока обеспечивает подвод энергии к распространяющимся возмущениям.
При любых заданных скоростях потока существует минимальное расстояние между клином и щелью, при котором может возникнуть дискретный тон. При расстояниях, больших минимального, частота тона возрастает с ростом скорости и уменьшается при
увеличении расстояния между клином и соплом до тех пор, пока нe достигаются условия, при которых появляется заметная нерегулярность потока. При этом наблюдается резкий скачок частоты дискретного тона. Дальнейшее увеличение расстояния или скорости при-
приводит к постепенному изменению частоты тона до появления второго скачка и так далее. Когда процесс проходит в обратном направлении, вновь имеют место скачки частоты, но уже при несколько других значениях скорости и расстояния.
Осесимметричные струи; дискретные тона. Когда струя, истекающая из круглого отверстия диаметром D, становится неустойчивой, вихри на краю отверстия сворачиваются в вихревые кольца (которые переносятся вниз по потоку), и струя принимает вид, показанный на рис. 2.27. Такая картина наблюдается при значениях
числа Рейнольдса 160 <.q0U ft [>ц<.\200. Более явная периодическая картина получается при истечении струи из отверстия в трубку. Такая периодичность может привести к генерации звука чистого тона. Однако, чтобы получить резкий тон, который не чувствителен к малым изменениям формы отверстия, следует продувать струю через
две пластинки с отверстиями (соответствующей формы и расположенных на соответствующем расстоянии). Такой механизм приводит к генерации звука в некоторых духовых инструментах и при свисте человека.
Картина течения, имеющая место при истечении струи из круглого сопла, подобна картине, наблюдаемой при истечении струи из отверстия, при этом неустойчивость струи приводит к развитию колебаний от синусоидальных к спиральным и даже к образованию
цепочки вихрей. При увеличении числа Рейнольдса выше 1200 течение в струе становится турбулентным, и периодическая структура постепенно исчезает. В этом случае развитие струи происходит таким образом, как показано на с. 93. Однако имеются предположения [45, 46], что характерные для малых скоростей периодические структуры сохраняются (даже при больших числах Рейнольдса) в форме крупномасштабных регулярных турбулентных структур, и они могут играть непосредственную роль в генерации шума высокоскоростными струями. Так, проведенные Молле Кристенсеном [46] измерения показали, что вне турбулентной струи пульсации давления состоят из хорошо различимых более или менее идентичных волновых пакетов, при этом единственной случайной величиной является относительное положение пакетов.
Струи, чувствительные к внешнему воздействию. Когда струя близка к турбулентному режиму, она весьма чувствительна к гармоническим тонам. Рэлей [8] связывал такое поведение струи с возбуждением звуковыми волнами в плоскости среза сопла неустойчивых волн в окружающем струю вихревом слое. Со времени первого наблюдения в 1850 г. колебаний пламени газовой горелки под влиянием звука виолончели явлению «чувствительных струй» посвящены многочисленные исследования. Недавно было показано, что даже турбулентные струи могут быть неустойчивыми к некоторым
типам возмущений. Так, Кроу и Шампань [45] показали, что плоские волны, падающие на срез сопла — начальное сечение струи(изнутри сопла), могут привести к генерации рассеивающихся волн,которые усиливаются средним потоком при распространении вниз
по потоку.
Изображения
Тип файла: bmp Рисунок1.bmp (72.1 Кб, 95 просмотров)
__________________
Бойтесь своих желаний,ибо они исполнятся.

Последний раз редактировалось DED; 27.05.2010 в 15:01..
DED вне форума   Ответить с цитированием
Этот пользователь сказал Спасибо DED за это полезное сообщение:
NikolayUB (20.05.2010)